Важные новости

Технологии распределенного реестра

Технологии распределенного реестра

Dt7i chains.png Технологии распределенного реестра Подход к созданию баз данных, ключевой особенностью которого является отсутствие единого центра управления 400 Цифровые сквозные технологии Средняя Полезно IT/soft Да Инфраструктура и инструменты (раздел) Цифровые технологии (раздел) Производные понятия (раздел) Межотраслевое (раздел) Системы распределенного реестра (раздел) Технологические решения (раздел) 4 Технологии распределенного реестра

Технология систем распределенного реестра (distributed ledger technology) представляет собой новый подход к созданию баз данных, ключевой особенностью которого является отсутствие единого центра управления. Каждый узел составляет и записывает обновления реестра независимо от других узлов.

Узел — это устройства, на которых установлено соответствующее программное обеспечение и которые совместно ведут распределенные базы данных. В такой системе узлы участников сети подключаются друг к другу для обмена и подтверждения информации, что существенно отличается от традиционной архитектуры централизованных систем, в которых присутствует единственный источник достоверных данных. Распределенные реестры позволяют вести актуальные копии базы данных на нескольких узлах, тем самым обеспечивая повышенную операционную устойчивость.

В отличие от распределенных баз данных каждый участник системы распределенного реестра хранит всю историю изменений и валидирует добавление любых изменений в систему с помощью алгоритма консенсуса, который математически гарантирует невозможность подделки данных при определенной доле достоверных нод. Однако ни один участник не может изменить данные в системе таким образом, что другие участники не узнают об этом. Благодаря этому данные, которые находятся внутри системы распределенного реестра, становятся доверенными, а все изменения – прозрачными.

Блокчейн – вариант реализации сети распределенных реестров, в котором данные о совершенных транзакциях структурируются в виде цепочки (последовательности) связанных блоков транзакций. Стоит отметить, что не все сети распределенных реестров функционируют на базе технологии блокчейн. Так, например, протокол Ripple подразумевает потранзакционный процессинг без формирования блоков.

В случае использования блокчейн каждый новый блок транзакций подтверждается участниками сети как валидный, после чего он присоединяется (встраивается в цепочку) со всеми предыдущими операциями в распределенном реестре.

Блоки содержат пакеты действительных транзакций, которые хешируются и кодируются в дереве Меркле. Каждый блок включает в себя криптографический хэш предыдущего блока в цепочке блоков, связывая их. Связанные блоки образуют цепочку. Этот итеративный процесс подтверждает целостность предыдущего блока вплоть до исходного блока генезиса.

Технология распределенного реестра является инфраструктурной, так как обеспечивает функционирование базисного слоя хранения и обмена данными, что применимо в операционных процессах любой другой «сквозной» цифровой технологии.

Оператор разработки дорожной карты — Новосибирский институт программных систем (НИПС) — дорожная карта развития СЦТ Системы распределённого реестра.

В части социального прогресса развитие технологии распределенного реестра позволит:

  • Повысить доступность финансовых услуг для наименее обеспеченных слоев населения и сократить комиссии на электронные банковские операции для конечных пользователей. Прогнозируемый эффект – 100% населения используют банковские услуги к 2024 году;
  • Получать государственные услуги в реальном времени и обеспечить неизменность и прозрачность данных при предоставлении различных государственных услуг. Прогнозируемый рост доверия населения к государственным услугам – 30% к 2024 году;
  • Сократить оборот контрафактных лекарств и улучшить здоровье населения за счет сокращения незаконного оборота рецептурных лекарств и рецептов. Прогнозируемое сокращение случаев заболеваний в результате приема контрафактных лекарств – 30% к 2024 году.

На основе произведенной оценки эффективности применения технологии и потенциальной максимизации экономической ценности были определены следующие приоритетные отрасли Российской Федерации для внедрения технологии: деятельность финансовая и страховая, транспортировка и логистика, государственное управление, деятельность в области здравоохранения, обрабатывающие производства.

Содержание

  • 1 Классификация сетей распределенных реестров
  • 2 Роли в системе распределенного реестра
  • 3 Консенсус и валидация в системе распределенного реестра
  • 4 Криптография
  • 5 Субтехнологии
  • 6 Практики применения
  • 7 Исследования
  • 8 Дополнительные материалы

Классификация сетей распределенных реестров

Открытые сети распределенных реестров – это сети, в которых участники не проходят полноценной идентификации (анонимность или псевдоанонимность), допуск к участию в которой не ограничен для широкого круга пользователей, статус не закреплен за определенными участниками, а также отсутствуют централизованные инстанции, управляющие правилами сети, ее конфигурацией и выпуском криптографических ключей. Криптовалютные сети РР, такие как Bitcoin, обычно представляют собой открытые системы.

Закрытые сети распределенных реестров устанавливают критерии членства, в соответствии с которыми участники допускаются к управлению узлами и получают доступ к сервисам сети. Эти критерии могут включать финансовые требования (например, платежеспособность участника или возможность получения доступа к ликвидным ресурсам), а также юридические требования (способность участника выполнять договорные обязательства перед системой или наличие соответствующих лицензий на осуществление деятельности). В такой сети участники идентифицируемы, допуск ограничен и регламентирован согласно правилам сети, статус участников, ответственных за валидацию, закреплен за определенными контрагентами, и в большинстве случаев существует некоторая инстанция, управляющая правилами сети.

Гибридные сети распределенных реестров сочетают в себе свойства как открытых, так и закрытых сетей.

Сети распределенных реестров также классифицируются по различным признакам:

  • по объектам транзакций:
    • информация;
    • виртуальная ценность (ценность, аналог которой отсутствует в «реальном мире» – например, Bitcoin);
    • по типу доступа к сети:
    • неограниченный (сети, в которых участникам позволено осуществлять любую деятельность);
    • ограниченный (сети, которые ограничивают виды деятельности участников);
  • по требованиям к прохождению идентификации:
    • анонимная;
    • псевдоанонимная;
    • полная идентификация;
  • по применяемому протоколу достижения консенсуса сети:
    • PoW (Proof-of-work) – право удостоверения блока дается участнику на основании выполнения им некоторой достаточно сложной работы, которая удовлетворяет заранее определенным критериям.
    • PoS (Proof-of-stake) – право удостоверения блока дается держателю счета, когда количество его средств и срок владения ими соответствуют заданным критериям. Формулы расчета критериев могут незначительно различаться.
    • PoS + PoW – гибрид PoW и PoS, когда блоки могут удостоверяться как через вычисляемые критерии PoS, так и PoW-перебором. Цель такого подхода – усложнить пересчет всей цепочки (с самого первого блока), возможный в случае использования PoS в чистом виде.
    • PBFT (Practical Byzantine Fault Tolerance), Paxos, RAFT – алгоритмы многоэтапного установления консенсуса сети (устойчивые к «византийскому поведению»). Алгоритмы данной группы позволяют сетям РР функционировать с небольшими затратами и имеют значительную пропускную способность, но слабоустойчивы к увеличению количества участников.
    • Non-BFT (Non Byzantine Fault Tolerance) – алгоритмы консенсуса, неустойчивые к поведению, при котором часть участников начинает работать против сети. Такие алгоритмы применимы в закрытых сетях с полной идентификацией.

      Роли в системе распределенного реестра

      Участниками системы могут быть определены различные роли, в том числе:

      • Пользователь – юридическое (или физическое) лицо с разрешением вносить изменения в реестр.
      • Валидатор – узел, которому делегировано право обновления реестра (участие в достижении консенсуса).
      • Посредник – промежуточное техно- логическое звено между системой и внешними участниками.
      • Администратор – провайдер определенных услуг в системе, например реализующий нотариальное заверение, урегулирование споров, определение стандартов.

      Консенсус и валидация в системе распределенного реестра

      При отсутствии центрального органа, который в авторитарном порядке обновляет реестр, узлы, валидирующие информацию, достигают согласия в отношении общего состояния реестра. Процесс консенсуса, как правило, включает два основных этапа:

      1. проверка, в процессе которой каждый валидатор идентифицирует и проверяет корректность изменений, вносимых в реестр;
      2. достижение соглашения об обновлении информации в реестре и утверждение изменений (задействуют- ся механизмы или алгоритмы, которые не позволяют приводить к возникновению конфликтов в реестре).

      Криптография

      В основе технологии распределенных реестров лежат различные криптографические методы и инструменты. Так, в решениях на основе технологии блокчейн формирование цепей блоков происходит с использованием механизмов хеширования: распределенная база данных представляет собой цепочку последовательных специальных блоков, каждый из которых в числе прочего содержит в себе хеш предыдущего блока и свой порядковый номер. Каждый новый блок подтверждает содержащиеся в нем транзакции и дополнительно подтверждает транзакции во всех предыдущих блоках цепочки. Таким образом, достигается неизменность хранимой информации, и скорректировать информацию внутри цепи становится невозможно, не нарушив ее целостности.

      Также для обеспечения неизменности и подлинности транзакции подписываются электронной цифровой подписью, для проверки которой используется открытый ключ отправителя транзакции. При этом значение хеш-функции от открытого ключа отправителя используется в качестве идентификатора отправителя, что служит механизмом идентификации участников сети. Так, право собственности на актив, включая возможность его передачи другим лицам (достаточность средств на балансе), определяется наличием криптографических ключей.

      Наконец, криптография также может использоваться для обеспечения процесса достижения консенсуса: большинство алгоритмов консенсуса в той или иной степени используют хеширование.

      Распределённые реестры и информационная безопасность: от чего защищает блокчейн

      Главные преимущества блокчейна — прозрачность проводимых транзакций и открытость. Это полезно при заключении контрактов и проведении сделок. Все участники процесса знают о шагах своих партнеров.

      Блокчейн также децентрализован, поэтому скомпрометировать хранимые в нем данные сложно. Эти свойства привели к тому, что технология получила широкое распространение в финансовом секторе. Однако применимость блокчейна не ограничена криптовалютами. Сегодня говорим о том, как технология используется для обеспечения информационной безопасности.


      / изображение Michael Pick CC

      Блокчейн становится подспорьем для сервисов, пользователи которых переживают о сохранности данных: IoT, юриспруденция, медицина, страхование и др. Например, за пределы работы с транзакциями его вывели в IBM. Компания создала облачный сервис для тестирования приложений в защищенной среде.

      По словам представителей IBM, разработчики могут запустить собственный блокчейн-sandbox за 12 секунд. Через минуту после этого он будет готов к запуску тестовых приложений.

      Еще один проект в этой сфере — решение Enigma от MIT, основанное на биткойн-блокчейне. Enigma позволяет запускать любой код на зашифрованных данных, при этом делая их «недосягаемыми» для третьей стороны.

      Другие компании тоже ищут применения блокчейну в сфере безопасности. Например, Humaniq, которая планирует использовать блокчейн совместно с технологиями искусственного интеллекта и распознавания биометрии для создания сервиса идентификации личности. Решение окажется полезным при покупке товаров в магазинах, оформлении страховок, даже при простом походе в бар. Похожее решение для авторизации предлагает компания Remme.

      Проект Guardtime использует закрытые блокчейны и заменяет цифровые подписи RSA подписями KSI (Keyless Signature Infrastructure). Они используют криптографию с хеш-функциями. Компания надеется, что это позволит избежать проблем в будущем, когда квантовые компьютеры получат распространение (они легко решают задачи факторизации, на которых строится RSA).

      От каких угроз защищает блокчейн

      Проблема безопасности стоит перед современным миром довольно остро. Растет количество киберугроз, в том числе связанных с кражей идентификационных данных. По информации аналитического агентства Cybersecurity Ventures, ежегодный ущерб от киберпреступлений достигнет 6 триллионов долларов к 2021 году. В 2015 году ущерб составлял 3 триллиона. Поэтому растет и количество средств, вкладываемых в кибербезопасность, — к 2021 году оно превысит 1 триллион долларов.

      Компании используют блокчейн, поскольку эта технология способна защитить данные и сделать их аудит более прозрачным. Блокчейн-технологии предотвращают целый спектр различных атак.

      Атаки типа man-in-the-middle

      Шифрованные соединения (например, HTTPS и TLS) для защиты каналов опираются на инфраструктуру сертификации открытых ключей (PKI) и удостоверяющие центры (CA). Каждый участник сети имеет пару открытый/закрытый ключ. Закрытый ключ он хранит втайне. Открытый ключ хранит CA.

      Когда пользователь хочет установить безопасное соединение (зайти на сайт), он запрашивает открытый ключ ресурса у сертификационного центра и шифрует данные перед отправкой. Чтобы расшифровать данные, сайт использует свой закрытый ключ.

      Однако в этом случае надежность системы зависит от того, насколько хорошо защищен удостоверяющий центр. Если злоумышленникам удается скомпрометировать CA, то они получают возможность провести атаку man-in-the-middle (MITM). В этом случае выполняется рассылка поддельных открытых ключей, к которым у хакеров есть соответствующие закрытые ключи. С их помощью выполняется расшифровка передаваемой информации.

      Например, недавно стало известно об уязвимости в WhatsApp, которая ставила под угрозу приватность пользователей. Баг был связан с реинсталляцией ключей и позволял злоумышленникам подменять их с помощью атаки MITM.

      Однако в системе, основанной на блокчейне, MITM не реализуема. Когда пользователь публикует открытый ключ в блокчейн, об этом «узнают» все узлы сети (например, биткойн-блокчейн имеет 10 тыс. активных узлов). Эта информация записывается в блок, и криптография блокчейна защищает целостность реестра. Поэтому опубликовать фейковые ключи у злоумышленников не получится — подделку сразу распознают.

      CertCoin — одна из первых реализаций PKI, основанных на блокчейне. Проект, разработанный в MIT, исключает удостоверяющие центры и использует блокчейн как распределенный реестр доменов и ассоциированных с ними публичных ключей.

      Другой пример — компания Pomcor. Она представила проект, который не исключает CA, но применяет блокчейн для хранения хешей выданных и отозванных сертификатов. Такой подход дает пользователям возможность проверить аутентичность сертификатов. Это также оптимизирует доступ к сети, поскольку верификация ключа и подписи проводится на локальных копиях блокчейна.

      Манипулирование данными

      В феврале прошлого года хакеры скомпрометировали сайт Linux Mint и загрузили на него зараженную версию операционной системы со встроенным бэкдором. Обычно разработчики предоставляют хеш-суммы, чтобы пользователи верифицировали копию ПО, однако здесь хакеры смогли опубликовать хеш-суммы своей версии. Поэтому скачавшие ОС пользователи не подозревали о подделке.

      Подобная ситуация может произойти с любой информацией, распространяемой в сети. И знать наверняка, что полученные данные аутентичны, нельзя.

      Однако в блокчейне участник сети может опубликовать хеш, ассоциированный с отдельным файлом, образом операционной системы и другими данными, требующими защиты. В этом случае, если хакеры доберутся до информации и изменят её, они не смогут подправить хеш-сумму, записанную в блокчейне.

      Проекты, реализующие такую задумку, уже есть. Стартап GuardTime предлагает использовать структуру бесключевой подписи (KSI). KSI хранит хеши данных и файлов и верифицирует копии с помощью хеширующих алгоритмов. Таким образом группа надеется заменить процесс аутентификации с использованием ключей.

      Технический директор GuardTime Мэттью Джонсон (Matthew Johnson) говорит, что аутентификация данных с помощью блокчейнов гарантирует их целостность за счет математических алгоритмов. Агентство DARPA даже рассматривает KSI в качестве решения для защиты секретной военной информации.

      Еще один пример — компания Gem, которая использует блокчейн для контроля медицинской документации. Госпитали работают с большим количеством личной информации о пациентах и ранее подвергались хакерским атакам. По словам представителей компании Gem, блокчейн поможет проверять целостность данных, к которым имеет доступ группа организаций.

      DDoS-атаки

      «Задачей» распределенных сетевых атак является ограничение пропускной способности сетевого ресурса, например, инфраструктуры, поддерживающей сайт компании. Веб-серверы всегда имеют ограничения по количеству запросов (обрабатываемых одновременно). Если число обращений к серверу превышает возможности какого-либо компонента инфраструктуры, возникают проблемы с уровнем обслуживания. Причем масштаб этих проблем зависит от цели DDoS-атаки.

      Массированная DDoS-атака на американского DNS-провайдера Dyn в прошлом октябре оставила миллионы пользователей без таких сервисов, как Twitter, PayPal, Netflix, GitHub и Spotify. DDoS-атака на Dyn проводилась с помощью гигантского ботнета Mirai, включавшего десятки миллионов устройств: роутеры, принтеры, IP-камеры и другие гаджеты, подключенные к интернету. Все вместе они транслировали данные на серверы Dyn со скоростью 1,2 Тбит/с. А в октябре этого года начал распространяться вирус Reaper, заражающий умные гаджеты по всему миру.

      Атака на DNS-провайдер Dyn показывает, насколько единые точки отказа и централизованные системы делают всю интернет-инфраструктуру уязвимой. Более серьёзным сценарием развития атак на DNS-серверы будет его компрометация с целью перенаправления пользователей на сайты с вредоносным программным обеспечением.

      Однако можно отказаться от центральных DNS-серверов и реализовать систему, в которой пары «имя — IP-адрес» регистрируются в блокчейн-сети и распределяются по всем узлам. Это обеспечит прозрачность и защищенность одновременно. Хакеры не смогут сделать своей целью какую-то одну инфраструктуру, атаковав отдельный кластер. Сами данные будут защищены криптографическими алгоритмами.

      Nebulis — это проект, который как раз исследует концепцию распределенных DNS-систем, выдерживающих большие «потоки» запросов. Компания использует Ethereum-блокчейн и межпланетную файловую систему (IPFS), чтобы регистрировать доменные имена.

      Блокчейн также исключит сетевые издержки, связанные с чтением DNS. «Налогом» будут облагаться процедуры обновления записей и внесения новых. По словам блокчейн-эксперта Филипа Сандерса (Philip Saunders), это позволит снять нагрузку со «скелета интернета».


      / изображение Henri Bergius CC

      Защита IoT-устройств

      Согласно результатам исследования компании F5 Networks, число атак на IoT-устройства и инфраструктуру выросло на 280% с начала текущего года. По большей части это связано с распространением вредоносного программного обеспечения Mirai. Хакеры взламывают девайсы интернета вещей и используют их для проведения DDoS-атак и хостинга инфраструктуры троянов.

      При этом, как отмечено в исследовании, преступники изменили тактику формирования ботнетов и специально ищут гаджеты, имеющие известные уязвимости.

      Блокчейн обещает защиту IoT по тем же причинам, по которым он является сердцем криптовалют: уверенность в легитимности данных и четкий процесс их утверждения. Так говорит IoT-эксперт Ахмед Банафа (Ahmed Banafa) и преподаватель в Университете штата Калифорния в Сан-Хосе. Банафа написал популярный обзор потенциала блокчейна для решения проблем безопасности IoT.

      Однако дело в том, что простой регистрации девайса в блокчейне недостаточно. Как говорит Томас Хардджоно (Thomas Hardjono) из MIT Connection Science, необходима инфраструктура для управления устройствами и контроля доступа к данным.

      Одним из решений может стать проект ChainAnchor, разработку которого ведут в MIT. Это фреймворк, который будут поддерживать создатели умных гаджетов, провайдеры данных и независимые разработчики. Идея состоит в том, что участники сети, в обмен на поддерживание безопасности, получат возможность продавать анонимные данные с IoT-устройств. Фреймворк имеет механизмы, позволяющие блокировать скомпрометированные устройства, а также отключать от блокчейна легитимные гаджеты при смене владельца.

      Исследователи из Университета Нового Южного Уэльса предлагают иной подход к безопасности IoT. В их модели блокчейн-защищенного умного дома имеется «майнер», который заменяет роутер для управления сетевыми транзакциями. Это устройство руководит коммуникациями между домашними IoT-устройствами и внешним миром: авторизует новые девайсы и отключает гаджеты с подозрительной активностью. Если компонент интернета вещей оказался частью ботнета, блок-майнер увидит это и прекратит высылать его пакеты за пределы домашней сети.

      Еще одной работой, основанной на распределенных реестрах, является проект IOTA. Он представляет собой криптожетон для микротранзакций и оптимизирован для использования в интернете вещей. Блокчейн IOTA создается легким, чтобы справиться с сетью умных устройств, число которых в ближайшие десять лет, по некоторым оценкам, вырастет до 50 миллиардов.

      Легкость достигается за счёт использования технологии Tangle. Это направленный ациклический граф, в котором отсутствуют направленные циклы (пути, начинающиеся и кончающиеся в одной и той же вершине). Такой подход исключает централизацию майнинга, расширяет пределы масштабируемости и позволяет работать в условиях неограниченного роста данных.

      Блокчейн и будущее кибербезопасности

      Блокчейн обеспечивает фундаментально иной подход к кибербезопасности, который распространяется за пределы узловых серверов и включает защиту данных пользователей, каналов общения и критической инфраструктуры, поддерживающей бизнес-процессы организаций.

      Уязвимости централизованных систем становятся все более очевидными с ростом числа кибератак. Новые угрозы в интернете будут возникать всегда. Блокчейны не станут «серебряной пулей», однако они выступят мощным инструментом, который инженеры смогут использовать для повышения надежности своих систем.

      https://cdto.wiki/%D0%A2%D0%B5%D1%85%D0%BD%D0%BE%D0%BB%D0%BE%D0%B3%D0%B8%D0%B8_%D1%80%D0%B0%D1%81%D0%BF%D1%80%D0%B5%D0%B4%D0%B5%D0%BB%D0%B5%D0%BD%D0%BD%D0%BE%D0%B3%D0%BE_%D1%80%D0%B5%D0%B5%D1%81%D1%82%D1%80%D0%B0
      https://habr.com/ru/company/bitfury/blog/341902/

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *